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IMPREGNATION OF A HEATED FILLER WITH A VISCOUS LIQUID 

Yu. A. Buevich and V; A. Kallnnikov UDC 532.546 

The kinetics of the penetration of a viscous liquid (connecting) inside a pre- 
liminarily heated porous body (the filler) moving inside it is considered. 

When manufacturing many composite materials employed in technology the process of im- 
pregnating a certain porous body, which plays the further role of a filler of the composite 
material, with a viscous liquid is widely employed. The viscous liquid later changes into a 
solid due to crystallization or vitrification on cooling, polymerization, etc. and plays the 
part of a solid binding matrix. The viscosity of the liquid, even at high temperatures, is 
often too high, and the filler is too dense so that the hydraulic resistance experienced by 
the liquid when filtering through the filler is also high, and when impregnating it is neces- 
sary to apply extremely high pressure gradients which cannot easily be employed under prac- 
tical conditions. Prolonged heating of the liquid to comparatively high temperatures to 
reduce its viscosity is undesirable in view of possible thermal expansion of the liquid or 
acceleration of other physicochemical processes occurring in it, and reactions which would 
reduce the quality of the composite material obtained. Such a situation usually arises when 
making many thermoplastics, glass-plastic materials, and a number of other composite materials. 

One of the methods of eliminating these difficulties is by preliminary heating to high 
temperatures of the filler itself for relatively moderate preliminary heating of the liquid. 
This enables one to confine the duration of the intense heating of the liquid within per- 
missible limits, which considerably facilitates its penetration into the filler. Hence, it 
is necessary to consider heat conduction in the filler--liquid system and filtering of the 
liquid simultaneously, taking into account the nonlinear dependence Of its viscosity on the 
temperature. 

The specific system considered is shown in Fig. I. It represents a realistic model of 
certain systems used in practice for producing composite materials. In the region of nega- 
tive x the filler is heated in a gaseous medium under a pressure p' (often reduced compared 
with atmospheric pressure) to a temperature T', which may sometimes reach thousands or more 
degrees Centrigrade. Hence, in region I of the filler, which may be a bunch of parallel 
fibers, a system of interlaced fibers, cloth material, etc., its pores are filled with gas 
under the pressure p'. The filler is drawn with constant velocity u into the chamber II, 
filled with liquid at a temperature T" < T' and a pressure p" > p'. Under the action of the 
pressure drop which occurs, the liquid, heated by heat transfer with the filler, penetrates 
deeper into it, displacing gas, and at distances x ~ Lx from the entry to the chamber II 
completely fills its pores. Thus, in addition to region I inside the filler there is a 
region III with pores filled with liquid; the boundary of the region is described by a cer- 
tain function Y(x). The length of the working part of the apparatus.Lx (where Y(Lx) = Ly), 
its dependence on the various parameters of the process and the physical characteristics of 
the filler and liquid, and also possible methods of reducing this length while simultaneously 
increasing the rate of spread u, which helps to intensify the process, are of particular 
practical interest. 

In this paper we will only investigate the plane problem (a "strip" of filler is drawn, 
the transverse dimensions of which in the direction perpendicular to the plane of the figure 
is far greater than Ly), and we will assume that the penetrability of the filler, the density 
and specific heat of the material of the filler and liquid and also the effective thermal 
conductivities are independent of the pressure and temperature. 
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Fig. I. Sketch illustrating the problem. 

If the filler possesses a fine-pore structure, characterized by a high specific surface, 
we can assume that interphase heat and momentum exchange in region III occurs much more 
rapidly than the impregnation itself, so that when investigating the latter we can assume 
that the temperatures of the filler and the liquid at any physical point of this region are 
the same, while the component of the velocity of the liquid in the direction is simply the 
same as the drawing velocity u. 

It follows from the equation of conservation of mass of the liquid SVy/~y = 0 that the 
rate of filtering Vy = v(x). On the basis of Darcy's law for the filtering of a liquid of 
variable viscosity, we have [I] 

_ ~ ap~, y) 
v(x)= ~(r--~ ay " (1) 

The viscosity ~J(T) depends on x and y implicitly in terms of the temperature dependence T = 
T (x, y). 

Integrating (I) and taking into account the fact that in regions I and II the pressure 
is p' and p", respectively, we obtain 

Y(x) I V~) I 
p o = p " - - p ' + p c = - -  F(T) dy, (2) 

~ ,T=T (x, y) 

where Pc is the capillary pressure, consideration of which may be important when the pores 
of the filler are small [I]. 

From geometrical considerations we have for the function Y(x) 

a~ (x___A .) = v (x__ L (3) 

dx eu 

The equation of convective heat conduction in region III can be written, for the same 
temperatures of the phases, in the form (see [2]) 

OT OT 02T + ~  02T 
[~PoCo + (l - -  e) ptcl] u O--x- +p~ov(x) ~ = X  x Ox--- ~ OY 2 (4) 

G e n e r a l l y  s p e a k i n g ,  t he  m a t e r i a l  i s  no t  n e c e s s a r i l y  i s o t r o p i c ,  so t h a t  i n  g e n e r a l  ~x # ~y. 
Practical methods of calculating these coefficients for heterogeneous materials of different 
structure can be found in [3]; the theory of the heat conduction of fiber materials, which 
are usually employed as fillers, is given in [4]. 

Equation (4) should, in the most general case, be solved simultaneously with similar 
equations written for regions I and II, under conditions of continuity of temperature and 
the normal component of the heat flux at the boundaries of the regions. Here, bearing in 
mind that we merely wish to obtain the simplest estimates, we will simplify the problem and 
we ~iI only consider Eq. (4) for the boundary conditions 

T :  T', y = Y(x); T = T", y = 0. (5) 

Hence, we have obtained the problem of heat conduction (4) and (5) in a region with unknown 
boundary Y(x), defined by Eq. (3), for a strong nonlinear dependence of the coefficient v(x) 
in (4) on the temperature, in accordance with Eq. (2). 

It is not possible to solve such a complex problem directly in a complete formulation. 
We will therefore simplify the problem by assuming that in situations of particular practical 
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interest we have Lx >> Ly. In this case it is quite natural to use the approximation of the 
thermal boundary layer [5] to solve the problem. If we introduce in the usual way the di- 
mensionless coordinates x/Lx ~ y/Ly, take into account the fact that v(x)/u ~ Ly/Lx, and 
estimate the terms of Eq. (4), typlcal for boundary layer theory [5], we arrive at the con- 
clusion that both convective terms in (4) have the same order of magnitude, but the longi- 
tudinal heat conduction (in the x direction) can be neglected compared with the transverse 
heat conduction. Introducing the dimensionless parameters 

we can rewrite Eq. (4) 

~'u PoCo 
a = =  , • = , ( 6 )  

~OoC o + (I  - - ~ )  p ic l  ~OoCo + (I - -  8) PlCl 

in  t h e  fo rm 
OT OT O~T 

- - = a  - -  (7) u Ox ~ v ( x )  Oy Oy' 

From the structure of the problem we can now suggest that it should be amenable to 
self-similar solutions. In the usual way, typical for the theory of thermal or hydrodynamic 
boundary layers, we will introduce the self-slmilar variable h and the parameter H 

h =  " u ~ / ~  H =  . ( 8 )  
VT' 

From (5) and ( 7 ) ,  a f t e r  r e d u c t i o n ,  we t h e n  o b t a i n  t h e  f o l l o w i n g  p r o b l e m :  

(uH --  h) - -aT  = __d~T, T =  T' (h = H), T = T" (h = 0). (9) 
dh dh~ 

In  d e r i v i n g  (9) we used  t h e  f o l l o w i n g  r e p r e s e n t a t i o n  f o r  t h e  r a t e  of  f i l t e r i n g  of  t h e  l i q u i d ,  
wh ich  f o l l o w s  f r o m  (3)  and (8) a s s um i ng  H i s  c o n s t a n t :  

v (x) = 8 V x  ( 1 0 )  

The s o l u t i o n  o f  p r o b l e m  (9) f o r  c e r t a i n  H can be w r i t t e n  in  t h e  fo rm 

r ' - r "  2 . . 2 

g[e~( x~)--erfiXH--hV2- )]' erf(x)=~-~ie-t'dt' erf(--x)=--erf(x). (I1) 
Here  e r f ( x )  i s  t h e  p r o b a b i l i t y  i n t e g r a l ;  when w r i t i n g  ( l l )  we used  an e x p r e s s i o n  f o r  t h e  
integrals in (II) given in [6]. 

Hence v(x) and T(x, y) = T(h) are completely defined apart from the constant I~ A 
transcendental equation for this quantity is obtained from (2) if we use as the argument of 
the function ~(T) the representation for T which follows from (II). Using (8) and (I0) we 
can write this equation in the form 

H 

~aH j' ~ (T) dh. (12) Po = ~ 
0 

For  an a r b i t r a r y  f u n c t i o n a l  d e p e n d e n c e  o f  ~ ( T ) ,  i n t e g r a l  (12) can be  o b t a i n e d  n u m e r i c a l l y ,  
which  e n a b l e s  one t o  f i n d  H in  t h e  fo rm o f  a f u n c t i o n  o f  po and o t h e r  p a r a m e t e r s  and t h e r e b y  
complete the solution of the problem. 

From the practical point of view an interesting situation is when h ~ H << |, which, as 
can easily be seen from (8) assuming there that x = Lx, Y(x) = Ly, corresponds to satisfac- 
tion of the inequality 

~ , l  • Lx ) << 1. (1 3) 

In this case we obtain from (II) 

T--  T" h + • --  hal6 h 
- - ~  ~ - -  �9 (14) 
T'--  T" H-k- (x-- 1/3) HS/2 H 

The l a t t e r  e q u a t i o n  in  (14) c o r r e s p o n d s  t o  t h e  q u a s i s t a t l c  model  o f  h e a t  c o n d u c t i o n  when 
convective heat transfer i s  negligibly small compared with conduction, and its use consider- 
ably simplifies the evaluation of the integral in (12). 
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In practice the quantity ~(T) can usually be approximated using more or less simple 
functions. We will consider examples of the calculations corresponding to different ver- 
sions of this approximation. Suppose 

~(7) ~ o  (1 T--T" I 
To / (15) 

where To is a certain quantity having the dimensions of temperature. This approximation is 
admissible when T' does not differ too much from T". Evaluating the integral in (12) using 
(14) and (15) and expressing Lx in terms of Ly from the requirement that when x = Lx and y = 
Ly, in accordance with (8), h is identical with H, we obtain 

L ~  eU~o 1 L~. 
2apo 2To 

(16) 

Over a wider temperature range, instead of (15) one often uses the approximation 

( 7 ) ~ 0 e x p  To " " (17) 

In this case, instead of (16) we obtain 

H~ ( ap~ T'--T" ) , / 2 [  1 - -  exp ( T"--T')]  -'/2, 
~ t o  To  ,- , To 

(18) 

L ~ ,  2ap0 T'--T" 1 - - e x p  To L2" 

F i n a l l y ,  t he  g e n e r a l  f o r m u l a  d e s c r i b i n g  t h e  d ep en d en ce  of  t h e  v i s c o s i t y  o f  a Newton ian  l i q u i d  
on the  t e m p e r a t u r e  has  t h e  form [7] 

To 
~(T) ~ ~0exp - -  , (I 9) 

T 

where  Uo i s  a s l o w l y  v a r y i n g  f u n c t i o n  o f  T, which to  a f i r s t  a p p r o x i m a t i o n  can be  assumed 
constant, while To means the characteristic "activation temperature." In this case we obtain 

n ~HTo ( T' T") 
b i'~t(T) dh= r, ~ F  --,To To ' 

(20) 
T' TOT, T" To / T o \  (__~, ) 

F = --T0 exp To exp ---T. -~- E i l - ~  ) - - E i  , 

Ei(x) = i et dt, 
2 .  t 

where E i ( x )  i s  the  i n t e g r a l  e x p o n e n t i a l  f u n c t i o n .  I n s t e a d  o f  (16) o r  (18) we have  

czP~ "1~'~ ( T "~ , L ~ - - .  L~. (21) It ( ' -  r_  Ur,o Fro o 
~, eatto ,l \ FTo ] 2~po T ' - - T "  

The de pe ndence  o f  H and Lx on t h e  f u n d a m e n t a l  p a r a m e t e r s  o f  t h e  p r o c e s s  c o r r e s p o n d i n g  
to  t h e  d i f f e r e n t  a p p r o x i m a t i o n s  f o r  u (T) have t h e  same form and a r e  e x t r e m e l y  s i m p l e ,  so 
t h a t  t h e r e  i s  no p o i n t  in  i l l u s t r a t i n g  them g r a p h i c a l l y  u n r e l a t e d  to  t h e  m a n u f a c t u r e  o f  some 
a c t u a l  m a t e r i a l .  A c c o r d i n g  to  ( 16 ) ,  (18 ) ,  and (2 1 ) ,  t h e  l e n g t h  Lx,  in  which t h e  i m p r e g n a t i o n  
i s  c o m p l e t e d ,  i s  i n d e p e n d e n t  o f  t he  t h e r m a l  c h a r a c t e r i s t i c s  o f  t h e  f i l l e r ,  f i l l e d  w i t h  l i q u i d .  
I t  can be shown t h a t  t h i s  i s  due to  t he  e s t a b l i s h m e n t  o f  t h e  q u a s i s t a t i c  t e m p e r a t u r e  d i s t r i -  
b u t i o n  (14) when i n e q u a l i t y  (13) i s  s a t i s f i e d .  In t h e  more g e n e r a l  c a s e  t h e  t e m p e r a t u r e  
f i e l d  (11) and Lx depend on t h e  t h e r m a l  p a r a m e t e r s .  

In c o n c l u s i o n ,  we w i l l  p o i n t  out  p o s s i b l e  f u r t h e r  d e v e l o p m e n t s  o f  t h i s  t h e o r y .  F i r s t l y ,  
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in a number of important practical cases it is also necessary to take into account the exis- 
tence of a thermal boundary layer in the region II filled with liquid, i.e., to solve the 
conjugate problem of thermal conduction instead of the problem considered above defined only 
for region III. In fact, the imposition of a second boundary condition in (5) corresponds 
to the assumption of "rapid" heat exchange in the liquid, which occurs, e.g., due to good 
mixing. Similar considerations also apply to the effect of heat conduction in region I. In 
addition, it is sometimes important to take into account in the equations the thermal effect 
occurring in homogeous and heterogeneous chemical reactions, which have been ignored above. 

We have only considered the plane problem corresponding to a strip of filler being 
drawn into a liquid. The axisymmetrical problem, when we are concerned with the impregna- 
tion of a cylindrical rope of filler is also of considerable interest. In this case a quan- 
tity occurs which has the dimensions of length, viz., the diameter of the rope, so that the 
process ceases to be self-similar and the mathematical problem is much more complex. In a 
number of cases a whole system of strips or ropes is drawn through the chamber with the 
liquid and collective effects of the hydrodynamic and thermal interaction between them become 
important; these have also not been considered. 

Finally, we have only investigated the impregnation of a porous filler with a Newtonlan 
liquid. In practice processes are widely used when the impregnating liquid possesses appre- 
ciable non-Newtonian properties, such as occurs when impregnating with resins, polymer melts, 
etc. The non-Newtonian properties of the liquid have an appreciable effect on its filtering 
characteristics, and this requires an independent analysis. 

NOTATION 

a, thermal diffusivity defined in (6); co and ct, specific heats of the liquid and ma- 
terial of the filler; F, function in (20) and (21); h and H, dimensionless quantities intro- 
duced in (8); Lx and Ly, characteristic dimensions; p, pressure; po, effective pressure drop 
taking the capillary pressure into account; T, temperature; To, a quantity occurring in the 
approximating relations for the viscosity; u, rate of pull through; v, rate of filtering of 
the liquid; x and y, longitudinal and transverse coordinates; Y(x), thickness of the thermal 
boundary layer; m, permeability of the filler; c, porosity of the filler; ~, a parameter de- 
fined in (6); ~x, ~y, thermal conductivitles; ~(T), viscosity of the liquid; ~o, character- 
istic value of the viscosity; 0o, 01, densities of the liquid and material of the filler; the 
prime and double prime refer to the parameters in regions I and II in the figure, respec- 
tively. 
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